C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Differential Geometry

Subject Code: 5SC	C02DIG1	Branch: M.Sc. (Mathematics)		
Semester: 2	Date :16/04/2019	Time : 02:30 To 05:30	Marks : 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION

			SECTION -1	
Q-1			Attempt the Following questions	(07)
		a.	Write Cartesian representation of the curve $\bar{\gamma}(t) = (t, t)$.	(01)
		b.	Give an example of a surface which cannot be covered by single surface	(01)
			patch.	
		c.	Write surface patch of plane.	(01)
		d.	State Four vertex theorem.	(01)
		e.	State Isoperimetric inequality.	(01)
		f.	Write Frenet-Serret equation.	(02)
Q-2			Attempt all questions	(14)
	a.		Compute curvature and torsion of the curve $\bar{r}(t) = (e^t \cos t, e^t \sin t, e^t)$.	(05)
	b.		Let $\overline{\gamma}$ be a regular curve in R ³ with nowhere vanishing curvature. Then $\overline{\gamma}$	(05)
			is planar if and only if the torsion of $\overline{\gamma}$ is identically zero.	
	c.		If $\overline{\gamma}$ is a regular curve in R ³ , then show that its curvature K is given by	(04)
			the formula $\mathbf{K} = \frac{\ \ddot{\mathbf{y}} \times \dot{\mathbf{y}}\ }{\ \mathbf{x}\ ^2}$	
			$\ \dot{\gamma}\ ^3$.	
			OR	
Q-2			Attempt all questions	(14)
	a.		State and prove Wirtinger's inequality.	(05)
	b.		let a and b be positive reals by applying isoperimetric inequality to the	(05)
			ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, prove that $\int_0^{2\pi} \sqrt{(a^2 \sin^2 t + b^2 \cos^2 t)} dt \ge 2\pi \sqrt{ab}$.	
	c.		Show that the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a convex curve.	(04)
Q-3			Attempt all questions	(14)
	a.		Compute unit normal and first fundamental form of	(05)
			$\sigma(u,v) = (u\cos v, \ u\sin v, v).$	

	b.	If $f: S_1 \to S_2$ and $g: S_2 \to S_3$ are smooth maps then show that $D_1(g \circ f)(n) = D_{S_1} \circ S_2 = f_1 \forall n \in S_1$				
	C	Let $\sigma: U \to \mathbf{R}^3$ be a patch of a surface S containing a point $n = \sigma(u_0, v_0)$				
		for some $(u_0, v_0) \in U$ then show that the tangent space to S at n is a				
		vector subspace of \mathbf{R}^3 spanned by $\sigma_1(\mu_0, \nu_0)$ and $\sigma_2(\mu_0, \nu_0)$.				
		OR				
Q-3		Attempt all questions	(14)			
	a.	Let $\overline{\gamma}$: $(a, b) \rightarrow R^3$ be a regular curve with nowhere vanishing curvature.	(06)			
		$(\dot{\overline{\gamma}} \times \ddot{\overline{\gamma}}) \cdot \ddot{\overline{\gamma}}$				
		Then prove that the torsion τ of $\bar{\gamma}$ is $\frac{1}{\ \dot{\tau}_{Y} + \dot{\tau}_{Y}\ ^{2}}$.				
	L	$\ \gamma \times \gamma\ $				
	D.	Calculate the signed unit normal of summation r .	(05)			
	c.	Compute the signed unit normal of $\operatorname{curvey}(t) = (e^{-t} \cos t, e^{-t} \sin t)$.	(03)			
		SECTION – II				
Q-4		Attempt the Following questions	(07)			
-	a.	Define: Mean curvature and Gaussian curvature.	(02)			
	b.	State Bonnet's theorem.	(02)			
	c.	Define Gauss map.	(01)			
	d.	Define : Geodesic	(01)			
	e.	Define: Umbilical point.	(01)			
0.5						
Q-5	0	Attempt all questions Let $\sigma_1 U \rightarrow \mathbf{R}^3$ be a surface patch of an oriented surface S and let	(14)			
	a.	Let $0: 0 \to \mathbf{R}^*$ be a surface patch of an oriented surface 5 and let $n = \sigma(u, u)$ be point on S then prove that the matrix of W, with respect	(05)			
		$p = o(u, v)$ be point on 5 then prove that the matrix of W_p with respect				
		to the basis $\{\sigma_u, \sigma_u\}$ of $T_p S$ is $\begin{pmatrix} E & F \\ F & C \end{pmatrix} = \begin{pmatrix} L & M \\ M & N \end{pmatrix}$.				
	b.	State and prove Euler's theorem.	(05)			
	с.	Compute Gaussian curvature and mean curvature of	(04)			
		$\sigma(u, v) = (\cos u, \sin u, v)$				
		OR				
Q-5		Attempt all questions	(14)			
	a.	Compute principal curvature and principal vectors of surface given by	(06)			
		$\sigma(u, v) = (u, v, uv)$ in the direction(0,0,0).				
	b.	State and prove Meusnier's theorem.	(05)			
	c.	Let σ be a surface patch of an oriented surface with the unit normal N	(03)			
		then prove that $N_u \sigma_u = -L$, $N_u \sigma_v = -M$ and $N_v \sigma_v = -N$.				
0-6		Attempt all questions	(14)			
χů	a.	Let $\phi: U \to V$ be a diffeomorphism between open subsets of \mathbb{R}^2 . Let	(06)			
		$\phi(u, v) = (f(u, v), g(u, v))$ where f and g are smooth functions. Prove	(00)			
		that ϕ is conformal iff $(f_u = q_u \& f_v = -q_u)$ or $(f_u = -q_u \& f_v =$				
		g_u).				
	h	Find the image of Gauss map for $\sigma(u, u) = (u, u, u^2 + u^2)$ $\forall u, u \in D$	(04)			
	D. C	State and prove Gauss Theorem Egregium				
		Saue and Prove Suuss Theorem Egregium.				

OR

Q-6Attempt all Questions(14)a. Compute the Christoffel's symbol of second kind for
 $\sigma(u, v) = (u \cos v, u \sin v, u).$ (05)b. State Gauss – Bonnet theorem. Prove that the sum of interior angles of a
regular n – gon on a plane is $(n - 2)\pi$ (05)c. let σ be a regular surface patch then prove that(04)

$$\Gamma_{11}^1 = \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}$$
, and $\Gamma_{11}^2 = \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)}$,

